An mRNA m7G Cap Binding-like Motif within Human Ago2 Represses Translation

نویسندگان

  • Marianthi Kiriakidou
  • Grace S. Tan
  • Styliani Lamprinaki
  • Mariangels De Planell-Saguer
  • Peter T. Nelson
  • Zissimos Mourelatos
چکیده

microRNAs (miRNAs) bind to Argonaute (Ago) proteins and inhibit translation or promote degradation of mRNA targets. Human let-7 miRNA inhibits translation initiation of mRNA targets in an m(7)G cap-dependent manner and also appears to block protein production, but the molecular mechanism(s) involved is unknown and the role of Ago proteins in translational regulation remains elusive. Here we identify a motif (MC) within the Mid domain of Ago proteins, which bears significant similarity to the m(7)G cap-binding domain of eIF4E, an essential translation initiation factor. We identify conserved aromatic residues within the MC motif of human Ago2 that are required for binding to the m(7)G cap and for translational repression but do not affect the assembly of Ago2 with miRNA or its catalytic activity. We propose that Ago2 represses the initiation of mRNA translation by binding to the m(7)G cap of mRNA targets, thus likely precluding the recruitment of eIF4E.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs

The 5'terminal oligopyrimidine (5'TOP) motif is a cis-regulatory RNA element located immediately downstream of the 7-methylguanosine [m7G] cap of TOP mRNAs, which encode ribosomal proteins and translation factors. In eukaryotes, this motif coordinates the synchronous and stoichiometric expression of the protein components of the translation machinery. La-related protein 1 (LARP1) binds TOP mRNA...

متن کامل

MicroRNA-146a and RBM4 form a negative feed-forward loop that disrupts cytokine mRNA translation following TLR4 responses in human THP-1 monocytes

Within hours after its initiation, the severe systemic inflammatory response of sepsis shifts to an adaptive anti-inflammatory state with coincident immunosuppression. This anti-inflammatory phenotype is characterized by diminished proinflammatory cytokine gene expression in response to toll-like receptor (TLR) stimulation with bacterial endotoxin/lipopolysaccharide (LPS), also known as endotox...

متن کامل

La-related protein 1 (LARP1) repression of TOP mRNA translation is mediated through its cap-binding domain and controlled by an adjacent regulatory region

Cell growth is a complex process shaped by extensive and coordinated changes in gene expression. Among these is the tightly regulated translation of a family of growth-related mRNAs defined by a 5' terminal oligopyrimidine (TOP) motif. TOP mRNA translation is partly controlled via the eukaryotic initiation factor 4F (eIF4F), a translation factor that recognizes the mRNA 5' cap structure. Recent...

متن کامل

General RNA binding proteins render translation cap dependent.

Translation in rabbit reticulocyte lysate is relatively independent of the presence of the mRNA m7G cap structure and the cap binding protein, eIF-4E. In addition, initiation occurs frequently at spurious internal sites. Here we show that a critical parameter which contributes to cap-dependent translation is the amount of general RNA binding proteins in the extract. Addition of several general ...

متن کامل

RNA-binding motif protein 4 translocates to cytoplasmic granules and suppresses translation via argonaute2 during muscle cell differentiation.

The RNA-binding motif protein 4 (RBM4) plays multiple roles in mRNA metabolism, including translation control. RBM4 suppresses cap-dependent translation but activates internal ribosome entry site-mediated translation. Because of its high expression level in muscle and heart, we investigated the function of RBM4 in myoblast cells. Here, we demonstrate that RBM4 is phosphorylated and translocates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 129  شماره 

صفحات  -

تاریخ انتشار 2007